

Musxese gryafano
5)

7)

8)

$5)$
6)

7)

8)

6x Hорнали колио пешт али иатоии

$$
\begin{aligned}
& \sigma_{x}=\frac{N}{A} \\
& \text { gui } \\
& \sigma_{x}^{H y}=\frac{H_{y}}{I_{y}} \cdot z^{g u j} \quad I_{y}=\int z^{2} t d s \\
& \text { guy } \\
& \sigma_{x}^{H z}=-\frac{H z}{I_{z}} \cdot y^{\text {gij }} \quad I_{z}=\int y^{2} t d s
\end{aligned}
$$

$$
\sigma_{x} N=\frac{N}{A}
$$

$\sigma_{x}^{\text {gui }} \mathrm{Hz}=\frac{M_{z}}{I_{z}} y^{\text {gui }}$

$$
I_{z}=\int y^{2} t d s
$$

$$
\begin{aligned}
& \left.\left.I_{z}=2 \cdot 1(18 \cdot 48) \cdot 18+4 \cdot 1 \cdot \frac{12}{6}[18 \mid 2 \cdot 18+6)+6 / 2 \cdot 6+18\right)\right]+ \\
& +2 \cdot 1 \cdot(6 \cdot 48) \cdot 6+2 \cdot 1 \cdot\left(\frac{1}{8} \cdot 6 \cdot 6\right) \cdot \frac{2}{3} \cdot 6=42192 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{x}^{\mathrm{Hz}}=\frac{7000 \mathrm{kNcm}}{42192 \mathrm{cmy}} \cdot(6 \mathrm{~cm})=9,954 \mathrm{MPa} \\
& \qquad 18 \mathrm{~cm})=29,863 \mathrm{MPa} \\
& A=5 \cdot 12 \cdot 1+4 \cdot 48 \cdot 1=252 \mathrm{~cm}^{2} \\
& \sigma_{x}^{N}=\frac{400 \mathrm{kN}}{252 \mathrm{~cm}^{2}}=15,873 \mathrm{MPa}
\end{aligned}
$$

$$
\begin{aligned}
& H_{y}=5 \mathrm{kNm} \\
& H_{z}=3 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{array}{ll}
A_{1}=20 & F_{1}(25 ;-10) \\
A_{2}=20 & \left.T_{2} / 25 ; 10\right) \\
A_{3}=25 & \left.T_{3} / 12 ; 5 ;-15\right) \\
A_{4}=25 & T_{4}(12 ; 5 ; 15) \\
A_{5}=20 & T_{5}(0 ;-10) \\
A_{6}=20 & T_{6}(0 ; 10) \\
A_{7}=10 & T_{7}(0 ; 0) \\
A=140 & 140 \\
I_{7}=\frac{20.25 \cdot 2+25-135.2}{14}=11,607
\end{array}
$$

$$
\begin{aligned}
& I_{z}=\int y^{2} t d s=2 \cdot 2(13,393 \cdot 10) \cdot 13,393+ \\
& \\
& +2 \cdot 1 \cdot \frac{1}{2}(13,393 \cdot 13,393) \cdot \frac{2}{3} \cdot 13,393+ \\
& \\
& +2 \cdot 1 \cdot \frac{1}{2} \cdot(11,607 \cdot 11,607) \cdot \frac{2}{3} \cdot 11,607+ \\
& \\
& +2 \cdot 2 \cdot(11,607 \cdot 10) \cdot 11,607+10(11,607 \cdot 10) \cdot 11,607 \\
& I_{z}=16555,06 \mathrm{~cm}^{4} \\
& \left.\left.I_{y}=4 \cdot 2 \cdot \frac{10}{6}[5 / 2 \cdot 5+15)+15 / 2 \cdot 15+5\right)\right]+ \\
& \\
& +2 \cdot 1 \cdot(15 \cdot 25) \cdot 15+2 \cdot 1 \cdot\left(\frac{1}{2} \cdot 5 \cdot 5\right) \cdot \frac{2}{3} 5=20000 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{array}{r}
\sigma_{x}^{\mathrm{Hz}}=\frac{300 \text { kNom }}{16555,06 \mathrm{~m}^{4}} \cdot 11,607 \mathrm{~cm}=2,103 \mathrm{MPc} \\
13,393 \mathrm{~cm}=2,427 \mathrm{MPc}
\end{array}
$$

$$
\sigma_{x}^{M y}=\frac{500 \mathrm{liNcm}}{20000 \mathrm{~cm}^{4} \cdot 5 \mathrm{~cm}=15 \mathrm{~cm}=35}=75
$$

(1) $y[\mathrm{~cm}]$

(2) $\int f \cdot g d s$

$$
\begin{aligned}
& \frac{6}{6}[-1(-2 \cdot 1+2)+0 \cdot(2 \cdot 2-1)]=0 \\
& \frac{6}{6}[-1(-2 \cdot 1+0)+2(2 \cdot 0-1)]=0
\end{aligned}
$$

3. grјаран $\stackrel{\rightharpoonup}{(A)}=s \cdot h$
ω_{p}-centoplua noopantata

$$
\begin{aligned}
& \omega_{1}=1 \cdot h=1 \cdot 3=3 \\
& \omega_{2}=(3)+3 \cdot 2=9 \\
& \omega_{3}=1 \cdot 3=3 \\
& \omega_{4}=(3)+3 \sqrt[v]{2} \cdot\left(\frac{3 \lambda_{8}}{2}\right)=12
\end{aligned}
$$

y_{1}
30
*23

$$
z_{T}=\frac{\sqrt{13} \cdot 0,2 \cdot 4+95 \cdot 35+49 \cdot 1+96}{2,221}
$$

$$
Z=2,312
$$

$$
\begin{aligned}
& I_{y_{1}}=\int z_{1}^{2} \underline{\underline{\underline{t}}} d s \\
& I_{z_{1}}=\int y_{1}^{2} \underline{\underline{t}} d s \\
& T_{y_{1} z_{1}}=\int y_{1} z_{7} \stackrel{t}{\underline{t}} d s \\
& I_{y_{T}}=I_{y_{1}}-A \cdot z_{t}^{2}=6,80{ }^{4} \\
& I_{z_{T}}=I_{z_{T}}-A \cdot y_{T}{ }^{2}=6,35 \ldots 3 \mathrm{abprquar} \text {. } \\
& I_{y z_{T}}=I_{y} z_{T}-A y_{T} \cdot z_{T}=-5,950+ \\
& \left.\left.I_{y_{1}}=\frac{\sqrt{13}}{6}[3 / 2 \cdot 3+5)+5 / 2 \cdot 5+3\right)\right] \cdot 0,2+ \\
& +\left(\frac{1}{2} \cdot 5 \cdot 5\right) \cdot \frac{2}{3} \cdot 5 \cdot 0,1+\left(\frac{1}{2} \sqrt{13} \cdot 2\right) \cdot \frac{2}{3} \cdot 2 \cdot 0,4+ \\
& +\left(\frac{1}{2} \cdot 2 \cdot 2\right) \cdot \frac{2}{3} \cdot 2 \cdot 0,3=18,67 \omega^{4} \\
& I_{z_{1}}=\left(\frac{1}{2} \sqrt{13} \cdot 3\right)-\frac{2}{3} \cdot 3 \cdot 0,2+\left(\frac{1}{2}, \sqrt{93} \cdot 3\right)-\frac{2}{3} \cdot 3 \cdot 0,4+ \\
& +(2 \cdot 3) \cdot 3 \cdot 0,3=10,09 \cdot 4 \\
& \left.I_{y_{1} z_{1}}=-\frac{\sqrt{13}}{6}[3 / 2 \cdot 3+5)\right] \cdot 92+\left(\frac{1}{2} \sqrt{33} \cdot 3\right) \frac{2}{3} \cdot 2 \cdot 94+ \\
& +\left(\frac{1}{2} \cdot 2 \cdot 2\right) \cdot 3 \cdot 0,3=0,718 \sim^{4}
\end{aligned}
$$

6. $\quad I_{y}=\int z^{2} t d s$

$$
I_{z}=\int y^{2} t d s
$$

$$
I_{z w}=\int z \cdot w \cdot t d s
$$

$$
\begin{aligned}
& 4 \\
& \left.I_{y}=2 \cdot \frac{2}{6}[1 / 2 \cdot 1+3)+3(2 \cdot 3+1)\right] \cdot 0,3+2 \cdot \frac{\sqrt{20}}{6}[3 / 2 \cdot 3+1 \\
& +1 / 2 \cdot 1+3)] \cdot 0,2+7 \cdot\left(\frac{1}{2} \cdot 3 \cdot 3\right) \cdot \frac{2}{6} \cdot 3 \cdot 0,2=16,55 \omega^{4} \\
& \left.\left.I_{z}=2 \cdot(2 \cdot 2) \cdot 2 \cdot 93+2 \cdot \frac{\sqrt{20}}{6}[2 / 2 \cdot 2-2)-2 /-2 \cdot 2+2\right)\right] \cdot 0,2 \\
& +(2 \cdot 6) \cdot 2 \cdot 92=11 \cdot 985 \\
& \left.I_{z u}=-\frac{2}{6}[12 \cdot 12 \cdot 1+3)+4(2 \cdot 3+1)\right] \cdot 0,3 \cdot 2-\frac{\sqrt{20}}{6}[4 / 2 \cdot 3+1
\end{aligned}
$$

8, $\quad y, z, w_{p}{ }^{4}$

$$
\begin{aligned}
& I_{y \omega_{p}^{A}}=\int y \cdot \omega_{p}^{A}-t d s \\
& I_{z \omega_{p}^{A}}=\int z \omega_{p}^{A} \cdot t d s
\end{aligned}
$$

CEUTOTCKN WENTPU MOMEHT UHEP $M J E$

$$
\omega=\operatorname{gup}_{p}^{A}-\left(\frac{S \omega_{p}^{A}}{\frac{\text { gur }}{}}{ }^{\text {iqupd }} \quad S \omega_{p}^{A}=\int \omega_{p}^{A} t d s\right.
$$

$$
\begin{aligned}
& 2,5 \\
& 2,5 \\
& +5 \cdot(5 \cdot 0,2) \cdot 2+2 \cdot 3,905 \\
& \cdot 92=5,562 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& S \omega_{p}^{A}=2 \cdot 0,2\left(-\frac{1}{2} 15 \cdot 5\right)+2 \cdot 0,2\left(-\frac{1}{2} \cdot 3,9057 \cdot 7,5\right) \\
& \operatorname{Su}_{p}^{A}=-20,85765 \mathrm{~cm}^{4} \\
& \sin \alpha=\frac{h}{2,5}=\frac{3}{3,9051} \\
& h=1,9206 \\
& \omega=s h=3,9051 \cdot 1,9206=7,5 \\
& \text { (1) }{ }^{\omega}=7,5+2,5-3= \\
& 15 w=w_{p}^{A}-\frac{-20,85765 \mathrm{~cm}^{4}}{5,562 \mathrm{~cm}^{2}} \\
& w=w_{p}^{A}+3,75
\end{aligned}
$$

$S y=\int z t d y \rightarrow$ og cxodoguux kpajebe
$S_{z}=\int y t d y$ CTATИムkn MOMENTV M\&EPGNVE

$$
S y\left[\mathrm{~cm}^{3}\right]
$$

$S y_{1}=\frac{1}{2} \cdot 20 \cdot 20 \cdot 1=$ $s y_{1}=200$
$S y_{2}=20+20 \cdot 20 \cdot 2=$
$8 y_{2}=1000$

$$
s_{y_{3}}=2000+\frac{1}{2} \cdot 20 \cdot 20 \cdot 4
$$

Ix ko mйогеиi aren narpous

$$
\begin{aligned}
& I_{x}^{T_{y}}=-\frac{T_{y} \cdot S_{z}^{* g y}}{I_{z} \cdot t} \\
& S_{z}^{*}=\int y t d s \quad I_{z}=\int y^{2} t d s \\
& Z_{x}^{T_{z}}=-\frac{T_{z} \cdot S_{y}^{*}}{I_{y} \cdot t} \\
& S_{y}^{*}=\int z t d s \quad I_{y}=\int z^{2} t d y
\end{aligned}
$$

$$
\begin{aligned}
& I_{z}=\int y^{2} t d s=2 \cdot\left(\frac{1}{2} \cdot 25 \cdot 25\right) \cdot \frac{2}{3} \cdot 25 \times 2+ \\
& +2 \cdot(20 \cdot 15) \cdot 15 \times 2+2,5 \cdot \frac{20}{6}[25 \cdot(2 \cdot 25+5)+ \\
& \frac{5 / 2 \cdot 5+25)] \times 2=64666,667 \mathrm{~cm}^{4}}{S_{z}\left[\mathrm{~cm}^{3}\right]} \\
& 4001750
\end{aligned} S_{z}=\int y t d s
$$

$$
\begin{aligned}
& S_{z_{1}}=\frac{15+25}{2} \cdot 10 \cdot 2,5=500 \quad S_{z_{2}}=\frac{15+5}{2} \cdot 10 \cdot 3,5=250 \\
& S_{z_{3}}=750+15 \cdot 20 \cdot 2=1350 \quad S_{z_{4}}=\frac{15+25}{2} \cdot 10 \cdot 2=400 \\
& S_{z_{5}}=1750+\frac{1}{2} 15 \cdot 15-2=1975
\end{aligned}
$$

$$
Z_{x}^{g u i} T_{y} \frac{T y\left(S z^{\text {gul }}\right.}{I_{z} \cdot t} I_{z}=\int y^{2} t
$$

$T y=10 \mathrm{kN}$

$$
\begin{array}{lll}
A_{1}=100 & T 10 ; 0) & Z_{T}=\frac{2 \cdot 40 \cdot 10+2 \cdot 50-20}{280} \\
A_{2}=40 & T 2(15 ; 10) & \\
A_{3}=40 & T 3 /-15 ; 10) & Z_{T}=10 \\
A_{4}=50 & T 4(15 ; 20) & \\
A_{5}=50 & T 5 /-15 ; 20) \\
A=280 &
\end{array}
$$

$\mathrm{Ix}^{\mathrm{Ty}}[\mathrm{MPa}]$

$$
\begin{equation*}
I_{x}=1-\frac{T y}{} \frac{T}{I_{z}} \cdot t \tag{24}
\end{equation*}
$$

0,309

$$
\tau_{x_{1}}=\frac{10 \mathrm{kN} \cdot 500 \mathrm{~cm}^{3}}{64666,667 \mathrm{~cm}^{4} \cdot 4,5 \mathrm{~cm}}=0,309 \mathrm{MPc}
$$

$$
I_{2}=\frac{10 \cdot 250}{64666,667 \cdot 2,5}=
$$

$$
\tau_{x_{3}}=\frac{10 \cdot 750}{64666,667 \cdot 2}=
$$

$$
z_{x_{y}}=\frac{10 \cdot 1350}{64666,667 \cdot 2}=
$$

$$
2 \times 5=\frac{10-400}{64666,667 \cdot 2}=
$$

$$
\begin{aligned}
& \tau_{x_{6}}=\frac{10 \cdot 1750}{64666,667 \cdot 2}= \\
& \tau_{x_{7}}=\frac{10 \cdot 1975}{64666667 \cdot 2}=
\end{aligned}
$$

3 aubopen маннозидин мресеи

TAHKOSUAHU MPECEK CE - TBApA ha ocu Ha VOJOJ CE HANASK TPAACBEPBANKA UNAA

Komionemisanum Ex of Mt oubopen isarnozugum ifocen

$$
\begin{aligned}
& I_{x}=\frac{M_{t}}{2 t \cdot F_{S}} \\
& F_{s}=b \cdot h
\end{aligned}
$$

$$
\begin{aligned}
& H_{t}=20 \mathrm{kNm} \\
& I_{t}=\frac{1}{3} \cdot \sum\left(b_{i} \cdot t_{i}^{3}\right)=\frac{1}{3} \cdot\left(2 \cdot 37,5 \cdot 5^{3}+95 \cdot 5^{3}\right) \\
& I_{t}=7083,333 \mathrm{~cm}^{4} \\
& I_{x_{1}}=\frac{\mathrm{Ht}}{I_{t}} \cdot t=\frac{2000 \mathrm{kNom}}{7083,333 \mathrm{~cm}^{4}} \cdot 5 \mathrm{~cm} \\
& I_{x_{1}}=1,412 \frac{\mathrm{NN}^{2}}{\mathrm{~cm}^{2}}=14,12 \mathrm{MPa}
\end{aligned}
$$

yount cof cuиzals

$$
\begin{aligned}
& z_{s}=z_{p}-\frac{I_{y} \omega_{p}^{A}}{I_{z}} \\
& I_{y} \omega_{p}^{A}=\int y_{1} \omega_{p}^{4} \cdot t d s \\
& I_{z}=\int y^{2} t d s
\end{aligned}
$$

$\underset{\leftarrow}{ \pm}$

$$
\omega_{p} \overparen{A}\left[\mathrm{~cm}_{\mathrm{L}}^{2}\right]=s \cdot h
$$

$$
\begin{aligned}
& \omega^{\text {guj }}=\omega_{p}^{A}-\left(\frac{S \omega_{p}^{A}}{A}{ }^{\text {urup. }}\right. \\
& S \omega_{p}^{A}=\int \omega_{p}^{A} \cdot t d s \text { (zrou) }
\end{aligned}
$$

$$
\begin{aligned}
& M_{t \omega}[K N m] \quad I_{x}^{M_{t w}}=-\frac{M_{t w} \cdot S_{\omega}}{I_{w} \cdot t} \\
& M_{t s}[\mathrm{lnm}] \quad \tau_{x}=\frac{M_{t s}}{I_{t}}, t \quad I_{t}=\frac{\pi}{3} \sum\left(b_{i} t_{i}\right.
\end{aligned}
$$

$\leftrightarrow \longleftarrow \omega=s \cdot h$

$$
\begin{aligned}
& H_{\omega}=20 \mathrm{kNm}^{2} \\
& M_{t \omega}=-100 \mathrm{kNm}
\end{aligned}
$$

$\omega\left[\mathrm{Crm}^{2}\right]$

$$
w_{1}=24 \cdot 6=144
$$

$24 \omega_{2}=144-12.24=-144$
$w_{3}=-144-24 \cdot 18$
$t=10 \mathrm{~m}$

$$
\begin{aligned}
& I_{\omega}=\int \omega^{2} t d s=4 \cdot 1 \cdot \frac{24}{6}[576 / 2 \cdot 576+144)+144 / 2.144 t \\
& +576)]+8 \cdot 1\left(\frac{1}{2} \cdot 6 \cdot 144\right) \cdot \frac{2}{3} \cdot 144+4 \cdot 1 \cdot\left(\frac{1}{2} \cdot 24 \cdot 144\right) \cdot \frac{2}{3} 144 \\
& \begin{array}{l}
I_{\omega}=14929920 \mathrm{~cm}^{6} \\
\mathrm{~g}_{x} M_{M \omega}=\frac{M_{\omega}}{I_{0}} \cdot \omega^{\mathrm{gM}}
\end{array} \\
& \begin{aligned}
\sigma_{x_{1}}=\frac{20 \cdot 10^{4} \mathrm{kNOm}^{2}}{14929920} \cdot(144) & =19,29 \mathrm{MPa} \\
(576) & =77,16 \mathrm{MPC}
\end{aligned}
\end{aligned}
$$

$$
I_{x}^{I_{M}}=-\sqrt{\frac{M t_{\omega}}{I_{\omega}} \cdot t} \cdot S_{\omega} \text { gry } \quad S_{\omega}=\int \omega t d s
$$

$$
Q_{N}=\frac{1}{2} \cdot 2 \cdot 12=12
$$

$$
\Rightarrow 20
$$

$$
S \omega=\int \omega t d s \quad S \omega\left[\mathrm{~cm}^{4}\right]
$$

$$
I_{x}^{M_{\omega w}}=-\frac{M_{t w}-S_{\omega}}{I_{\omega}+t}
$$

$$
I_{x_{1}}=\frac{10000 \mathrm{kNom} \cdot 8640}{14929920 \mathrm{~cm}^{6}-1 \mathrm{~cm}}
$$

Hou

$$
\begin{aligned}
& \tau_{x_{1}}=57,870 \mathrm{MPa} \\
& \tau_{x_{2}}^{190721}=60,764 \mathrm{MPa} \\
& \tau_{x_{3}}^{(6912)}=46,296 \mathrm{MPa}
\end{aligned}
$$

$$
z_{s}=z_{p}-\frac{I_{y} \omega_{p}{ }^{1}}{I_{z}} \quad I_{z}=64666,667 \mathrm{~cm}^{4}
$$

100

$$
\begin{aligned}
& \omega_{p}^{A}=20 \cdot 15=300 \\
& \omega_{p}^{A}=300+10 \cdot 20=500 \\
& \omega_{p}^{A}=300-10 \cdot 20=100
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Iy} \omega_{p}^{A}=\int y \cdot \omega_{p}^{A}-t d s \\
& \operatorname{Iy} \omega_{p} A=2\left(\frac{1}{2} \cdot 20-300\right) \cdot 15+2 \cdot f \cdot \frac{20}{6}[25 / 2 \cdot 100+500)+ \\
& +5 \cdot / 2 \cdot 500+100)]=243333,333 \mathrm{~m}^{5} 563333,333 \\
& z_{s}=(-10)-\frac{243 \cdot 3331335}{64666,667}=-433 \mathrm{~cm}-18,711 \\
& \begin{aligned}
M_{t}=10 \mathrm{kN} \cdot \frac{13,765 \mathrm{~cm}}{}=\frac{437,63 \mathrm{kNom}}{18,711 \mathrm{~cm}}=187,11 \mathrm{vNom}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& I_{t}=\frac{1}{3} \sum\left(b_{i} \cdot t_{i}^{3}\right)=\frac{1}{3} / 2 \cdot 20 \cdot 2,5^{3}+2 \cdot 20 \cdot 2^{3} \mathrm{t} \\
& \left.+50 \cdot 2^{3}\right)=448,333 \mathrm{~cm}^{4} \\
& I_{x}=\frac{187,113}{I_{t}}, t \cdot I_{x_{1}}=\frac{13,35 \mathrm{~km}}{448,333 \mathrm{~mm}^{4}} \cdot 2 \mathrm{~cm}=\frac{67 \mathrm{HP}}{10,4 \mathrm{HPa}} \begin{array}{l}
10,43 \mathrm{HP} \\
|3,5 \mathrm{~mm}|=7,67 \mathrm{HPc}
\end{array}
\end{aligned}
$$

7.

$$
\begin{aligned}
& z_{T}=\frac{40 \cdot 20}{100}=80 \mathrm{~m} \\
& y_{T}=\frac{40 \cdot 5+20(-10)}{100}=0
\end{aligned}
$$

$$
\begin{array}{ll}
M_{t}=25 \sqrt{2} \cdot 8 \mathrm{kNOm}=200 \sqrt{2} \mathrm{kNcm} \\
I_{x}^{T y}=-\sqrt{\frac{T y}{T} \cdot S_{z}} & I_{z}=\int y^{2} t d s \\
I_{z} \cdot t & S_{z}=\int y \cdot t d s \\
I_{x}^{T_{z}}=-\frac{T_{z}-S y}{I_{y} \cdot t} & I_{y}=\int z^{2} t d s
\end{array}
$$

$$
\begin{aligned}
& I_{z}=\int y^{2} t d s=4 \cdot\left(\frac{1}{2} \cdot 10 \cdot 10\right) \cdot \frac{2}{3} 10+1 \cdot\left(\frac{1}{2} \cdot 20 \cdot 20\right) \cdot \frac{2}{3} 20 \\
& I_{z}=4000 \mathrm{~cm}^{4} \\
& \left.\left.\left.I_{y}=\int z^{2} t d s=1-\frac{40}{6}[32 / 2 \cdot 32-8)-8\right)-2 \cdot 8+32\right)\right] \\
& +4 \cdot(10 \cdot 8) \cdot \varepsilon+1 \cdot(20 \cdot 8) \cdot 8=14933,333 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
S_{z}\left[\mathrm{~cm}^{3}\right]
$$

$$
S_{z_{1}}=4-\frac{1}{2} \cdot 10 \cdot 10=200
$$

$$
\begin{aligned}
& S y_{1}=4 \cdot(8 \cdot 10)=320 \\
& S y_{2}=1 \cdot(8 \cdot 20)=160 \\
& S y_{3}=480+1 \cdot \frac{1}{2} \cdot 8 \cdot 8=512 \\
& S y_{4}=1 \cdot \frac{1}{2} \cdot 32 \cdot 32=512
\end{aligned}
$$

$$
\begin{aligned}
& {\left[x^{T z}\left[\mathrm{HPa}_{a}\right]\right.}
\end{aligned}
$$

$$
\begin{aligned}
& Z x^{T z}=-\frac{T z-S y}{I_{y} \cdot t} \\
& t_{x_{1}}=\frac{25 \sqrt{2} \cdot 320}{14933,33-4} \frac{\mathrm{kN}}{\mathrm{~cm}^{2}}=1,894 \mathrm{MP} \\
& \tau_{x / 2}=\frac{25 \sqrt{2} \cdot 160}{14933,33 \cdot 1} \quad \frac{\mathrm{kN}}{\mathrm{~cm}^{2}}=3,79 \\
& E_{x_{3}}=\frac{25 \sqrt{2} \cdot 480}{14933,33 \cdot 1}=11,36 \\
& \tau_{x_{4}}=\frac{25 \sqrt{2} \cdot 512}{14933,33 \cdot 1}=12,12
\end{aligned}
$$

$$
Z_{x}^{H_{t}}\left[M P_{a}\right]
$$

H Tobatobuts
 204/08

$$
\begin{aligned}
& I_{t}=\frac{1}{3}\left(40-1^{3}+20-1^{3}+10-4^{3}\right)=233,33 \mathrm{ces}^{4} \\
& Z_{x_{1}}=\frac{200 \sqrt{2} \mathrm{kNcm}}{233,33 \mathrm{~cm}^{4}}, 1 \mathrm{~cm}=12,12 \mathrm{HPe} \\
& \left.\tau_{x_{2}} / 4 \mathrm{~cm}\right)=48,48 \mathrm{MPc} \\
& Z_{x y}^{A}=4,419+0,947-48,48=-44,22 \\
& S^{A}=\left[\begin{array}{ccc}
0 & -44,22 & 0 \\
-44,22 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \overrightarrow{M P_{c} \longrightarrow y} x \\
& \sigma_{1,2}=0 \pm \sqrt{0+(44,22)^{2}}=\frac{\sigma_{1}=44,22 \mathrm{MP}}{\sigma_{2}=-44,22}
\end{aligned}
$$

$$
G=80 G P a=80000 \mathrm{MPC}=8000 \mathrm{kN} / \mathrm{cm}^{2}
$$

$$
H_{t}=3000 \text { kwem } \quad Z_{x}=\frac{H_{t}}{2 t F_{s}}
$$

$$
F_{S}=20 \cdot 30+\frac{1}{2} 10^{2} \pi
$$

20

$$
F_{S}=757,08 \mathrm{~cm}^{2}
$$

10 $I_{x_{\eta}}=\frac{3000}{2 \cdot 2 \cdot 757,08}=9,90 \mathrm{MP}$ $t_{x_{12}}=\frac{3000}{24 \cdot 757,08}=4,95 \mathrm{MP}$

$$
\begin{aligned}
& I_{t}=\frac{4 F_{s}^{2}}{\sum \frac{G i}{t_{i}}}=\frac{4 \cdot 757,08^{2}}{\left(\frac{20}{2}+\frac{30}{2}+\frac{20}{4}+\frac{10}{2}+\frac{10 \pi}{2}\right)}=45213,42 \mathrm{~cm}^{4} \\
& \varphi_{\text {max }}=\frac{H_{t} l}{G I_{t}}=\frac{3000 \mathrm{kNam} \cdot 200 \mathrm{~cm}}{8000 \frac{\mathrm{kN}}{\mathrm{~cm}} \cdot 45213,42 \mathrm{~cm}^{4}}=1,65 \cdot \frac{10^{-3}}{\mathrm{rad}}
\end{aligned}
$$

a) Hargpipaum gujayan Mt

$$
\begin{aligned}
& M t(x=0)=20 \\
& H t(x=2)=15
\end{aligned}
$$

$$
\begin{aligned}
& E=20 G P_{a}=20 \cdot 10^{6} \mathrm{kPa}\left[\frac{\mathrm{kN}}{\mathrm{~m}^{2}}\right] \quad V=0,15 \\
& G=\frac{E}{2(1+v)}=\frac{20 \cdot 10^{6}}{2(1+0,15)}=8,69 \cdot 10^{6} \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{s}=28 \cdot 42=1176 \mathrm{~cm}^{2} \\
& \tau_{x_{n}}=\frac{2000 \mathrm{kNcm}}{2 \cdot 2 \mathrm{~cm} \cdot 1176}
\end{aligned}
$$

$$
I_{1}{ }_{3} \quad Z_{x_{2}}=\frac{2000 \mathrm{kWan}}{2 \cdot 3 \cdot 1776}
$$

$$
\begin{aligned}
& \varphi=\int_{0}^{4} \frac{H t(x) d x}{G I_{t}} \\
& I_{t}=\frac{4 F_{s}^{2}}{\sum \frac{b_{2}}{6}}=\frac{4 \cdot 1176^{2}}{\left(\frac{42}{2} \cdot 2+\frac{28}{3} \cdot 2\right)}=91185,23 \mathrm{~cm}_{4}^{4} \\
& \varphi=\int_{0}^{4} \frac{\left(20-1,25 x^{2}\right) d x}{8,69 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~m}^{2}} \cdot 91185,23 \cdot 10-8} \\
& \varphi=\frac{1}{7929,15} \cdot / 20 x-1,\left.25 \frac{x^{3}}{3}\right|_{0} ^{y}=6,73 \cdot 10^{-3} \mathrm{ral}
\end{aligned}
$$

I. 39 upecen 1-4 y yusenquary Hauparaus gujarparre kosupremennaurx nandua.

$$
\underbrace{\substack{10}}_{\substack{15}}
$$

$$
\mathrm{My}-25 \mathrm{kNrm}
$$

$Z x \circ g M_{t}$
oubbopen ifoecen

nog 3 ambojenux

$$
F_{S}=b l
$$

$$
\tau_{x}=\frac{M t}{2 t \cdot F_{s}}
$$

$$
I_{t}=\frac{4 F_{s}^{2}}{\sum\left(\frac{b_{i}}{t_{i}}\right)}
$$

N

$$
\varphi=\frac{M_{t} l}{G I_{t}}
$$

$$
1-1
$$

$$
\mu=\frac{c}{b}=\frac{30}{20}=1,5
$$

30

$$
I_{t}=\alpha \cdot b^{3}-l
$$

$$
I_{t}=0,195 \cdot 20^{3} \cdot 30
$$

$$
I_{t}=46800 \mathrm{~cm}^{4}
$$

$$
\begin{aligned}
& I_{t}=\frac{4 \cdot F_{S}^{2}}{\sum \frac{b_{i}}{t^{\prime}}} \quad F_{S}=18 \cdot 28 \\
& F_{S}=504 \mathrm{~cm}^{2} \\
& I_{t}=\frac{4 \cdot 504^{2}}{\left(\frac{18}{2} \cdot 2+\frac{28}{2} \cdot 2\right)}=22088,35 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\varphi_{c}=\frac{M t \cdot 2,5 \mathrm{~m}}{G \cdot 46800 \cdot 10^{-8} \mathrm{~m}^{4}}+\frac{M t \cdot 2,0 \mathrm{~m}}{G \cdot 22088,35 \cdot 10^{-8} \mathrm{~m}^{4}}
$$

$$
I_{z}=\frac{R^{4} \pi}{2}
$$

$$
S^{A^{\prime}}=\left[\begin{array}{cccc}
0 & -73,171 & 0 \\
-73,171 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]^{2}
$$

$$
\begin{aligned}
& I_{t}=\frac{1}{3} \sum\left(b_{i} \cdot t_{i}^{3}\right)=\frac{1}{3} \cdot\left(4 \cdot 2^{3}+4 \cdot 1^{3}+5 \cdot 1^{3}\right) \\
& I_{t}=13,666 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
\left.\left.I_{x}=\frac{M_{t}}{I_{L}} \cdot t=\frac{100 \mathrm{kakm}}{13,666 \mathrm{~cm}^{4}} / 12 \mathrm{~cm}\right)=73,171 \mathrm{MP}\right) & =146,342 \mathrm{MPc}
\end{aligned}
$$

$$
\begin{aligned}
& I_{t}=\frac{1}{3}\left(b_{i} \cdot t_{i}^{3}\right) \quad H_{t}=1 \mathrm{kN} \mathrm{~mm}^{3} \\
& \left.I_{t}=\frac{1}{3} \cdot / 2 \cdot 20 \pi \cdot 2^{3}\right) \\
& I_{t}=335,103 \mathrm{~cm}^{4} \\
& S^{A}=\left[\begin{array}{ccc}
b & 0 & -5,968 \\
0 & 0 & 0 \\
-5,968 & 0 & 0
\end{array}\right] \mathrm{MPa}
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}^{\mu t}=\frac{100 \mathrm{kNcm}}{335,103 \mathrm{~cm} 4} \cdot 2 \mathrm{~cm}=5,968 \mathrm{HPG} \\
& \varphi=\frac{1 \mathrm{kNm} \cdot 3 \mathrm{~m}}{G \cdot 335,103-10^{-8} \mathrm{~ms}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{S}=R^{2} \pi=20^{2} \pi=400 \pi \mathrm{~cm}^{2} \\
& I_{x}=\frac{H t}{2 t \cdot F_{S}}=\frac{100 \mathrm{kN} / \mathrm{cm}}{2 \cdot 2 \mathrm{~cm} \cdot 400 \pi \mathrm{~cm}^{2}}=0,199 \mathrm{MP} \mathrm{c}_{c} \\
& I_{t}=\frac{4 \cdot F_{S}^{2}}{\sum\left(\frac{B_{i}}{t_{i}}\right)}=\frac{4(400 \pi)^{2} \mathrm{~cm}^{4}}{\left(\frac{2 \cdot 20 \cdot \pi)}{2}\right.}=100530,965 \mathrm{~cm}^{4} \\
& \varphi_{B}=\frac{1 \mathrm{kNm} \cdot 3 \mathrm{~m}}{100530,965 \cdot 10^{-8} \mathrm{~m}^{4} \cdot G}
\end{aligned}
$$

1. bеревиани soneдave - youd

H. Fobandents
2. xop pomajabe

$$
\pi \sqrt{4}
$$

3. fasaregaise viarane A \& B

4. offisane - panalyije - naild

youl a sarme 4

M M

F

$$
\begin{aligned}
& v_{A}=\int^{\text {nocar }} \frac{M \cdot \sqrt[H]{H}}{E I} d s+\int^{\text {up mityan }} \frac{M \cdot \bar{H}}{E F} d s . / E T \\
& \left.E I v_{A}=\int M \cdot M \cdot d s+\frac{\pi^{2}}{\frac{T}{E}}\right)^{2} M \cdot \sqrt{M} d s \\
& {[m] v_{A}=\frac{1}{E T} \cdot\{\square\}}
\end{aligned}
$$

(b) (A)

$$
\int M \cdot M \cdot d s
$$

$$
\begin{aligned}
& \left.E I V_{A}=\frac{1}{2} \cdot \frac{6}{6}[4(2.4+4)-20 / 2.4+4)\right] \\
& E I U_{A}=-96 \quad V_{A}=-\frac{1}{E I} \cdot 96\left[\mathrm{KN} \mathrm{~m}^{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
E_{L} \varphi_{A} & =\frac{1}{2} \cdot \frac{6}{6}[4 \cdot(21+1)-20 \cdot(21+1)]\left[\mathrm{NN} \mathrm{~m}^{2}\right] \\
\varphi_{A} & =\frac{1}{E I}\left(-24 \mathrm{kNm}^{2}\right]
\end{aligned}
$$

d
MN

$$
\begin{aligned}
& I=0,1 \mathrm{~m}^{2} \\
& \sum H_{B}=0 \\
& 4 \cdot 2-S_{1} \cdot 4=0
\end{aligned}
$$

F \sqrt{G}

$$
+0,1 \cdot(1 \cdot 6)-2\left[1 \mathrm{inm}^{3}\right]
$$

$$
v_{A}=\frac{1}{E I}\left(-84,133 \mathrm{kN} \mathrm{~m}^{3}\right)
$$

$$
E I \varphi_{4}=-1 \cdot 4 \cdot 16+\frac{1}{2} \cdot 1 \cdot 4 \cdot \frac{2}{3} \cdot 8+0,1 \cdot\left(\frac{1}{4} \cdot 6\right) \cdot 2\left[V N M^{2}\right]
$$

$$
\varphi_{A}=-\frac{1}{E T} 53,03 \mathrm{~s}
$$

Sbreparbe

1. beprivarи qонеране - yited $\left(V_{4}\right)$

$$
\sqrt{M} \sqrt{M}
$$

3. 40 mefabe

4. oofinase - poriarrige - nabed

IT N

$$
\begin{aligned}
& \sum M_{B}=0 \\
& 1 \cdot 6-S_{1} \cdot 4=0 \\
& S_{1}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& u_{A}=\frac{1}{E I}\left\{\frac{1}{2} \cdot\left(\frac{1}{2} \cdot 6 \cdot 6\right)-\frac{2}{3} \cdot 24+\left(\frac{1}{2} \cdot 4 \cdot 6\right) \cdot \frac{2}{3} \cdot 8+\right. \\
& \left.+0,1 \cdot\left(\frac{3}{2} \cdot 6\right) \cdot 2\right\} \\
& \delta_{A}=\sqrt{u_{A}^{2}+v_{A}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1} \cdot \delta_{14}+\delta_{10}=0 \\
& \left.\delta_{11}=\int_{D E} \frac{H_{1} \cdot H_{1}}{E I_{1}} d s+\int_{A B} \frac{M_{1} \cdot N_{1}}{E F_{2}} d s+\int_{D C} \frac{N_{1} \cdot N_{1}}{E F_{3}} d s \right\rvert\, \cdot E \\
& E I_{1} \cdot \delta_{11}=\delta_{11}^{*}=\int_{D E} H_{1} \cdot H_{1} d s+\frac{I_{1}}{F_{2}} \int_{A_{B}} N_{1} \cdot M_{9} d s+\frac{I_{1}}{F_{3}} \int_{D C} N_{1} N_{1} d s
\end{aligned}
$$

$$
A B=\frac{I_{1}}{F_{2}}=\frac{36000 \mathrm{cy}^{4}}{30 \mathrm{cy}^{2}}=1200 \mathrm{~cm}^{2}=0,12 \mathrm{~m}^{2}
$$

$$
D C=\frac{I_{1}}{F_{3}}=\frac{36000 \mathrm{~cm}^{4}}{60 \mathrm{~cm}^{2}}=0,06 \mathrm{mp}^{2}
$$

$$
E I \delta_{11}=\left(\frac{1}{2} \cdot 4 \cdot 4\right) \cdot \frac{2}{3} \cdot 4+0,12-(1-4) \cdot 1+
$$

$$
+906 \cdot(1 \cdot 2) \cdot 1=21,933
$$

$$
E I \delta_{6}=-\frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} 240-906 \cdot 1 \cdot 2 \cdot 60=-5127 .
$$

$$
x_{1} \cdot 21,933-5127,2=0 \quad x_{1}=233,766
$$

$$
M=M_{0}+X_{1} \cdot M_{1} \quad M=M_{0}+X_{1} N_{1}
$$

(*) Ciraciurm keogfogom $H=H_{0}+H_{x_{1}} \quad 11$.

$$
P=30 \mathrm{kN}
$$

$$
\overrightarrow{\Sigma H_{G}}=0 \quad 30 \cdot 8-S_{1} \cdot 4=0
$$

$$
\begin{aligned}
& \delta_{k w^{\prime}}=0 \quad \int_{E b} \frac{\bar{Y}-M}{E I} d s+\int_{A B} \frac{N-N}{E F} d s+\int_{D C}^{1 / 0} \frac{N-N}{E T} d s=0 \\
& M=H_{2}+H x_{1} \quad N=N N_{0}+N x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A B=\frac{I_{D E}}{F_{B B}}=\frac{36000 \mathrm{~cm}^{4}}{30 \mathrm{~cm}^{2}}=1200 \mathrm{~cm}^{2}=0,12 \mathrm{~m}^{2} \\
& D C: \frac{I_{b E}}{I_{B C}}=\frac{36000}{60}=600 \mathrm{~cm}^{2}=0,06 \mathrm{~m}^{2} \\
& \delta_{\mathrm{kW}}=0 \quad M \\
& -\left(\frac{1}{2} \cdot 4 \cdot 4\right) \cdot \frac{2}{3} \cdot 240+\left(\frac{1}{2} \cdot 4 \cdot 4\right) \frac{2}{3} \cdot 4 x_{1}+0,12 \cdot(1 \cdot 4) \cdot x_{1} \\
& -\frac{1 B}{0,06 \cdot(1 \cdot 2) \cdot 60}+0,06 \cdot(1 \cdot 2) \cdot x_{1}=0 \\
& \frac{1286,72}{1287,2}+21,933 x_{1}=0 \\
& x_{1}=58,687 \mathrm{kN}
\end{aligned}
$$

(t)
 $z_{5}=4$

$$
r=2 k=2.2=4
$$

$$
z_{y}=2
$$

$$
z a=0
$$

(1) $W_{B}=0$

$$
\begin{aligned}
& \int \frac{\bar{H}-M}{E I} d s=0 \\
& -\frac{1}{6} \frac{l}{2}\left[\frac{p l}{2}\left(2 l+\frac{l}{2}\right)\right]+\frac{1}{2} \cdot l l-\frac{2}{3} x_{9} l-\frac{1}{2} l l \cdot x_{2}=0
\end{aligned}
$$

|2|

$$
\begin{aligned}
& \varphi_{B}=0 \\
& \frac{1}{2} \frac{l}{2} \cdot \frac{p l}{2} \cdot 1-\frac{1}{2} l \cdot x_{3} l \cdot 1+1 l \cdot x_{2}=0 \\
& -\frac{5}{48} P l^{3}+\frac{1}{3} x_{3} l^{3}-\frac{1}{2} x_{2} l^{2}=0 \quad /=l^{2} / .48 \\
& \frac{1}{8} P l^{2}-\frac{1}{2} x_{3} l^{2}+x_{2} l=0 \quad 1: 1 \quad 1 \cdot 8 \\
& -5 p l+16 x_{1} l-24 X_{2}=0 \\
& P l-4 x_{1} l+8 X_{2}=0 / .4 / .3 \\
& -P l+8 x_{2}=0 \quad x_{2}=\frac{1}{8} P l \\
& -2 p l+4 x_{p} l=0 \quad x_{n}=\frac{1}{2} p
\end{aligned}
$$

0

Ho

$$
H x_{1}
$$

x_{1}

$$
\sqrt{7}
$$

$$
f=\frac{1}{8} l l^{p} \cdot l^{2}=\frac{p l}{\gamma}
$$

 4) корара аи
$W^{*}=\sum A \cdot d_{n-n} \quad M^{*}=W^{*}-\sigma T \quad$ ipaguen nocan
$N^{\prime}=A-\sigma \tau$ 3c iporeqp syuanoly

тipu kozak
$\left.\max 146,45 P=M^{*} \Rightarrow P_{1}\right\} \operatorname{mon} P_{h}=P_{1}$

$$
S=4,45 P=M^{*} \Rightarrow P_{1}
$$

$$
\left.\begin{array}{l}
4,45 P_{1}+1,43 \Delta P=N^{\alpha} \\
P_{1}+\Delta P=H^{\alpha} \\
1,2 P_{1}+3,2 \Delta P=H^{*}
\end{array}\right\}
$$

$$
P^{*}=P_{1}+\Delta P
$$

$$
\begin{aligned}
& \sigma_{T}=240 \mathrm{MP} P_{c}=24 \frac{\mathrm{kN}}{\mathrm{~cm}^{2}} \\
& 1-1
\end{aligned}
$$

$$
\begin{aligned}
& W^{*}=(6 \cdot 10 \cdot 5) \cdot 2=600 \mathrm{~cm}^{3} \\
& M^{*}=W^{*} \cdot 6 T=600 \mathrm{~cm}^{3} \cdot 24 \frac{\mathrm{kN}}{\mathrm{~cm}^{2}} \\
& H^{*}=14400 \mathrm{kNOM}=144 \mathrm{kNm}
\end{aligned}
$$

(囷 11

$$
\begin{aligned}
& A=1-1=1 \mathrm{~cm}^{2} \\
& N^{2}=A G T=1 \mathrm{~cm}^{2}-24 \frac{\mathrm{ka}}{\mathrm{~cm}} \\
& I_{y}=\frac{6 \cdot 20^{3}}{12}=4000 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
A^{1} \quad N^{\prime}=A \sigma_{r}=1 \mathrm{~cm}^{2}-24 \frac{\mathrm{kN}}{\mathrm{~cm}^{2}}=24 \mathrm{kN}
$$

2-2

$$
F_{2}=1 \cdot 1=10 \mathrm{~m}^{2}
$$

[1, 11

$$
\frac{I}{F}=\frac{4000 \mathrm{~cm}^{4}}{1 \mathrm{~cm}^{2}}=4000 \mathrm{~cm}^{2}=0,4 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\varepsilon_{a} & \int_{s} \frac{N \bar{N}}{E \cdot A} d s+\int_{s} \frac{M M_{y}}{E-5} d s / X(+y) \\
& =\int_{s} M M y d s+\frac{I y}{A} \int N \tilde{N}
\end{aligned}
$$

$$
\begin{aligned}
& -(x \cdot 3) \cdot \frac{3}{4} p-\left(\frac{1}{2} \cdot 5 \cdot 4\right) \frac{2}{3}, \frac{3}{2} p+\frac{1}{8} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 4 x_{1}+ \\
& +(4-3) \cdot 4 x_{1}+\frac{1}{2} \cdot 5 \cdot 4 \cdot \frac{2}{3} \cdot 4 x_{1} \cdot 9 \cdot 4 \cdot(9 \cdot 6) \cdot x_{1}=0 \\
& -19 p+98,4 x_{1}=0 \quad x_{1}=0,193 P
\end{aligned}
$$

$$
\begin{aligned}
& \max H=0,772 P=144 \Rightarrow P_{1}=186,5285 \\
& S=0,193 P=24 \quad \Rightarrow \quad P_{1}=124,352 \mathrm{kN}
\end{aligned}
$$

$$
\delta_{10}=\int \frac{\mu_{r} M}{L_{1}} \vec{m}^{0} \quad t \rightarrow \infty
$$

wawe A

$$
\begin{aligned}
& E I \varphi_{4}=1 \cdot 2 \cdot 9-\left(\frac{2}{3} \cdot 2 \cdot 4,5\right)-1,0+ \\
& +\left(\frac{1}{2} \cdot 1 \cdot 6\right) \cdot \frac{2}{3} \cdot 18-\frac{2}{3} \cdot 6 \cdot 40,5-0,5+ \\
& +\frac{1}{2} \cdot \frac{3}{6}\left[\frac{1}{2} \cdot(-2 \cdot 42+30)\right]\left[K N m^{2}\right]
\end{aligned}
$$

topo ruиatue

Cит анитин keogfofem nосаи

кеповиañe cy:
$Z_{S}=\delta \mu \eta$ doux uq व्य aubbc $=9$
$z_{0}=\delta j i$ ocnonarmix ourc $=2$

$$
\begin{aligned}
& Z_{k}=\delta_{i j} \text { кдулих yonobe }=5 \\
& n=17
\end{aligned}
$$

Spin yeaoba pabuona ene

$$
r=2 k=2 \cdot 8=16
$$

$n-r=17-16=1 \times$ cuaw veoof

leungo curc

$$
\begin{aligned}
& v_{A}=\int \frac{H \cdot F}{E I} d s=0 \\
& v_{A}=\int \frac{\left(H_{0}+x_{1} \cdot H_{1}\right) \cdot \tilde{H}}{E I} d s=0 \\
& \int \frac{H_{0} \cdot \tilde{H}}{E I} d s+x_{1} \cdot \frac{M_{1} \cdot \tilde{H}}{E I} d s=0 \\
& x_{1} \int \frac{H_{1} \cdot H_{1}}{E I} d s+\int \frac{H_{0} \cdot H_{1}}{E I} d s=0 \\
& x_{1} \cdot \delta_{11}+\delta_{1_{0}}=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{1} \cdot \delta_{11}+\delta_{10}=0 \Rightarrow x_{1} \\
x_{1} \cdot \delta_{11}+x_{2} \cdot \delta_{12}+\delta_{10}=0 \\
x_{1} \cdot \delta_{21}+x_{2} \cdot \delta_{22}+\delta_{20}=0
\end{array}\right\} \begin{aligned}
& x_{1} \\
& x_{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{1} \cdot \delta_{11}+x_{2} \cdot \delta_{12}+x_{3} \cdot \delta_{13}+\delta_{10}=0 \\
x_{1} \cdot \delta_{21}+x_{2} \cdot \delta_{22}+x_{3} \cdot \delta_{23}+\delta_{20}=0 \\
x_{1} \cdot \delta_{31}+x_{2} \cdot \delta_{32}+x_{3} \cdot \delta_{33}+\delta_{30}=0
\end{array}\right\} \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}
$$

$$
\delta_{11}^{\prime}=E I \delta_{11}=\int \frac{I_{0}}{I_{i}} \int\left(H_{1} \cdot H_{1} d s+\left(\frac{m_{c}}{F_{i}}\right)^{2} N_{1} \cdot N_{1} d s\right.
$$

$$
\delta_{12}^{\prime}=\delta_{21}^{\prime} .
$$

1-1

$\sigma_{T}=240 \mathrm{MPa}$, Soio ropoboc

$$
\begin{aligned}
& z_{S}=6 \\
& z_{6}=5 \\
& z_{4}=0 \\
& z_{k}=4 \\
& n=15
\end{aligned}
$$

$$
r=2 k=2 \cdot 7=14
$$

$1 \times$ curan neogf

(2) $\sum X=0 \quad X_{B}=0$
(3) $\overrightarrow{\sum H_{A}}=0 \quad-Y_{B}-2+p, 6=0$

1poleре $~ \& Y=0 \quad-2 P-P+3 P=0$
(M7) $\left(N_{1}\right)$
(1) $2 X=0$

$$
\begin{aligned}
& \neq \begin{array}{l}
X_{B}=0 \\
(2) \sum M_{B}^{\prime}=0 \\
Y_{A} \cdot 2-1.3=0 \\
Y_{A}=\frac{3}{2} \\
+(3) \sum M_{A}=0 \\
-Y_{B} \cdot 2-1.5=0
\end{array}
\end{aligned}
$$

$1-1$

$$
\begin{aligned}
& A_{1}=10,14=140 \quad \bar{T}_{1}(0,7) \\
& A_{2}=6 \cdot 10=60 \quad T_{1}(0 ; 1,5) \\
& A=80 \\
& \left.I_{2} / 0 ; 9\right) \\
& Z_{T}=\frac{140 \cdot 7-60 \cdot 9}{80}=5,5 \\
& I_{y}=\frac{10 \cdot 14^{3}}{12}+140 \cdot 1,5^{2}-\left[\frac{6 \cdot 10^{3}}{12}+60-3,5^{2}\right]=1366,667 \mathrm{cu}^{4}
\end{aligned}
$$

$1, R=20 \mathrm{~m}$

$$
A=R^{2} \pi=2^{2} \pi=4 \pi \mathrm{am}^{2}
$$

$$
\frac{I y}{F}=\frac{1366,667 \mathrm{~cm}^{4}}{4 \pi \mathrm{~cm}^{2}}=108,7558778 \mathrm{~cm}^{2}=0,01088 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
x_{1} \cdot \delta_{11}+\delta_{10} & =0 \\
x_{1} \cdot E I \delta_{11}+E I & \cdot E I \\
\delta_{10} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } X_{1} \cdot \delta_{11}^{\prime}+\delta_{10}^{\prime}=0 \\
& \delta_{11}^{\prime}=\int H_{1} \cdot H_{1} d s+\left(\frac{T}{F}\right)\left(N_{1} \cdot N_{1} \cdot d s\right. \\
& \frac{T}{F}=0,01088 m^{2} \\
& \delta_{11}^{\prime}=\left(\frac{1}{Q} \cdot 2 \cdot 3\right) \cdot \frac{2}{3} \cdot 3+\left(\frac{1}{2} \cdot 3 \cdot 3\right) \cdot \frac{2}{3} \cdot 3+ \\
& +0,01088 \cdot(2 \cdot 1) \cdot 1=15,022 \\
& \delta_{10}^{\prime}=\int H_{1} \cdot H_{0} d s=-\left(\frac{1}{2} \cdot 2 \cdot 3\right) \frac{2}{3} \cdot 4 P- \\
& \left.-\frac{3}{6}[3 / 2 \cdot 4 P+P)\right]=-21,5 P
\end{aligned}
$$

11) $\quad X_{1}, 15,022-21,50=0 \quad x_{1}=1,431 P$

$$
M=M_{0}+X_{1} \cdot M_{1}=M_{0}+1,431 p \cdot M_{9}
$$

$$
M=-4 p+1,431 p \cdot / 3)=0,293 p
$$

$$
H=M_{0}+X_{1} \cdot H_{1}=M_{0}+0,331 p \cdot H_{1}
$$

$$
\begin{aligned}
& M=-6 p+3 \cdot(9331 p)=-5,007 \\
& M=-3 \cdot 9331 p=-9993 p \\
& M=3 p-6 \cdot 9,331 p=1,014 p
\end{aligned}
$$

1-1

$$
\begin{aligned}
& A_{1}=48 \quad \bar{T}_{1}(0,4) \quad T_{1}(0 ;-3,5) \\
& 0 \\
& \begin{array}{l}
A_{2}=48 \\
A=96 \\
0
\end{array} \\
& Z_{T}=\frac{T_{2}(0,11)}{96}
\end{aligned}
$$

$$
\left.I_{y}=\frac{6 \cdot 8^{3}}{12}+48 \cdot(-3,5)^{2}+\frac{8 \cdot 6^{3}}{12}+48 \cdot 13,5\right)^{2}=1576 \mathrm{~cm}^{4}
$$

2-2

$$
I_{y}=\frac{6^{4}}{12}=108 \mathrm{~cm}^{4}
$$

$$
\frac{I_{1}}{I_{2}}=\frac{1576 \mathrm{~cm}^{4}}{108 \mathrm{~cm}^{4}}=14,593
$$

$$
\begin{aligned}
& \frac{I_{1}}{I_{2}}=14,593 \\
& x_{1} \cdot \delta_{11}+\delta_{10}=0 / \cdot E I_{y_{1}} \\
& \delta_{11}^{\prime}=\int_{1-1}^{I_{2}} H_{1} \cdot H_{1} d s+H_{1} \cdot H_{1} d s \\
& \delta_{11}^{\prime}=\left(\frac{1}{2} \cdot 3 \cdot 3 / \cdot \frac{2}{3} \cdot \xi+14,593 \cdot\left(\frac{1}{2} \cdot 6 \cdot 6\right) \cdot \frac{2}{3} \cdot 6=1059,696\right. \\
& \delta_{10}^{\prime}=\int_{1-1} H_{1} \cdot H_{0} d s+\frac{I_{1}}{I_{2}} \int_{1} H_{1} \cdot M_{0} d s \\
& \left.\delta_{10}^{\prime}=-\frac{3}{6}[3 \cdot(2 \cdot 6 P+3 P)]-14,593 \cdot \frac{3}{6}[3 P / 2 \cdot 6+3)\right] \\
& \frac{\delta_{10}^{\prime}=-350,8425 P}{} \\
& X_{1} \cdot \delta_{11}^{\prime}+\delta_{10}^{\prime}=0 \\
& X_{1} \cdot 1059,696-350,8425 P=0 \\
& x_{1}=0,331 P
\end{aligned}
$$

